A 1-DIMENSIONAL PEANO CONTINUUM WHICH IS NOT AN IFS ATTRACTOR

TARAS BANAKH AND MAGDALENA NOWAK

(Communicated by Alexander N. Dranishnikov)

ABSTRACT. Answering an old question of M. Hata, we construct an example of a 1-dimensional Peano continuum which is not homeomorphic to an attractor of IFS.

A compact metric space X is called an *IFS-attractor* if $X = \bigcup_{i=1}^{n} f_i(X)$ for some contracting self-maps $f_1, \ldots, f_n : X \to X$. In this case the family $\{f_1, \ldots, f_n\}$ is called an *iterated function system* (briefly, an IFS); see [3]. We recall that a map $f: X \to X$ is *contracting* if its Lipschitz constant

$$\operatorname{Lip}(f) = \sup_{x \neq y} \frac{d(f(x), f(y))}{d(x, y)}$$

is less than 1.

Topological properties of IFS-attractors were studied in [6], [7], [9], [1], [11]. In particular, it was observed that each connected IFS-attractor X is locally connected. The reason is that X has property S. We recall [10, 8.2] that a metric space X has property S if for every $\varepsilon > 0$ the space X can be covered by a finite number of connected subsets of diameter $< \varepsilon$. It is well known [10, 8.4] that a connected compact metric space X is locally connected if and only if it has property S if and only if X is a *Peano continuum* (which means that X is the continuous image of the interval [0, 1]). Therefore, a compact space X is not homeomorphic to an IFSattractor whenever X is connected but not locally connected. Now it is natural to ask if there is a Peano continuum homeomorphic to no IFS-attractor. An easy answer is "Yes" as every IFS-attractor has finite topological dimension; see [5]. Consequently, no infinite-dimensional compact topological space is homeomorphic to an IFS-attractor. In such a way we arrive at the following question posed by M. Hata in Remarks to Theorem 4.6 [6].

Problem 1. Is each finite-dimensional Peano continuum homeomorphic to an IFSattractor?

In this paper we shall give a negative answer to this question. Our counterexample is a rim-finite plane Peano continuum. A topological space X is called *rim-finite*

2010 Mathematics Subject Classification. Primary 28A80, 54D05, 54F50, 54F45.

Key words and phrases. Fractal, Peano continuum, Iterated Function System, IFS-attractor.

Received by the editors July 19, 2011.

The first author has been partially financed by NCN means, granted by decision DEC-2011/01/B/ST1/01439.

The second author was supported by the ESF Human Capital Operational Programme grant 6/1/8.2.1./POKL/2009.

if it has a base of the topology consisting of open sets with finite boundaries. It follows that each compact rim-finite space X has dimension $\dim(X) \leq 1$.

Theorem 1. There is a rim-finite plane Peano continuum homeomorphic to no IFS-attractor.

It should be mentioned that examples of Peano continua $K \subset \mathbb{R}^n$, which are not *isometric* to IFS-attractors, were constructed by Kwieciński [8] and Sanders [13]. However these continua are *homeomorphic* to IFS-attractors, so they do not answer Problem 1.

Theorem 1 contrasts with a result of Duvall and Husch [4] saying that a finitedimensional compact metrizable space X containing an open zero-dimensional subspace without isolated points is homeomorphic to an IFS-attractor.

1. S-dimension of IFS-attractors

In order to prove Theorem 1 we shall observe that each connected IFS-attractor has finite S-dimension. This dimension was introduced and studied in [2].

The metric S-dimension S-Dim(X, d) is defined for each metric space (X, d) with property S. For each $\varepsilon > 0$ denote by $S_{\varepsilon}(X)$ the smallest number of connected subsets of diameter $< \varepsilon$ that cover the space X and let

S-Dim
$$(X, d) = \overline{\lim_{\varepsilon \to +0}} - \frac{\ln S_{\varepsilon}(X)}{\ln \varepsilon}.$$

The metric S-dimension is greater than or equal to the standard box-counting dimension

$$\operatorname{Dim}(X,d) = \overline{\lim_{\varepsilon \to +0}} - \frac{\ln N_{\varepsilon}(X)}{\ln \varepsilon},$$

where $N_{\varepsilon}(X)$ stands for the smallest number of subsets of diameter $\langle \varepsilon \rangle$ that cover X. By a classical result of Pontrjagin and Schnirelmann [12], for each compact metrizable space X the infimum

 $\dim(X) = \inf\{\operatorname{Dim}(X, d) : d \text{ is a continuous metric on } X\}$

coincides with the covering topological dimension of X.

In contrast, for a Peano continuum X its *S*-dimension

 $S-\dim(X) = \inf\{S-\dim(X, d) : d \text{ is a continuous metric on } X\}$

can be strictly larger than the topological dimension $\dim(X)$ of X; see [2, 7.1].

Theorem 2. Assume that a connected compact metric space (X, d) is an attractor of an IFS $f_1, f_2, \ldots, f_n : X \to X$ with contracting constant $\lambda = \max_{i \le n} \operatorname{Lip}(f_i) < 1$. Then X has finite S-dimensions

$$\operatorname{S-dim}(X) \le \operatorname{S-Dim}(X, d) \le -\frac{\ln(n)}{\ln(\lambda)}.$$

Proof. The inequality $S-\dim(X) \leq S-\dim(X, d)$ follows from the definition of the S-dimension S-dim(X). The inequality $S-\dim(X, d) \leq -\frac{\ln(n)}{\ln(\lambda)}$ will follow as soon as for every $\delta > 0$ we find $\varepsilon_0 > 0$ such that for every $\varepsilon \in (0, \varepsilon_0]$ we get

$$-\frac{\ln S_{\varepsilon}(X)}{\ln \varepsilon} < -\frac{\ln(n)}{\ln(\lambda)} + \delta.$$

Let $D = \operatorname{diam}(X)$ be the diameter of the metric space X. Since

$$\lim_{k \to \infty} \frac{\ln(n^k)}{\ln(\lambda^{k-1}D)} = \lim_{k \to \infty} \frac{k\ln(n)}{(k-1)\ln(\lambda) + \ln D} = \frac{\ln(n)}{\ln(\lambda)},$$

there is $k_0 \in \mathbb{N}$ such that for each $k \ge k_0$ we get

$$-\frac{\ln(n^k)}{\ln(\lambda^{k-1}D)} < -\frac{\ln(n)}{\ln(\lambda)} + \delta.$$

We claim that the number $\varepsilon_0 = \lambda^{k_0-1}D$ has the required property. Indeed, given any $\varepsilon \in (0, \varepsilon_0]$ we can find $k \ge k_0$ with $\lambda^k D < \varepsilon \le \lambda^{k-1}D$ and observe that

$$\mathcal{C}_k = \left\{ f_{i_1} \circ \cdots \circ f_{i_k}(X) : i_1, \dots, i_k \in \{1, \dots, n\} \right\}$$

is a cover of X by compact connected subsets having diameter $\leq \lambda^k D < \varepsilon$. Then $S_{\varepsilon}(X) \leq |\mathcal{C}_k| \leq n^k$ and

$$-\frac{\ln(S_{\varepsilon}(X))}{\ln(\varepsilon)} \le -\frac{\ln(n^{k})}{\ln(\lambda^{k-1}D)} < -\frac{\ln(n)}{\ln(\lambda)} + \delta.$$

In the next section we shall construct an example of a rim-finite plane Peano continuum M with infinite S-dimension S-dim(M). Theorem 2 implies that the space M is not homeomorphic to an IFS-attractor and this proves Theorem 1.

2. The space M

Our space M is a partial case of the spaces constructed in [2] and called "shark teeth". Consider the piecewise linear periodic function

$$\varphi(t) = \begin{cases} t - n & \text{if } t \in [n, n + \frac{1}{2}] \text{ for some } n \in \mathbb{Z}, \\ n - t & \text{if } t \in [n - \frac{1}{2}, n] \text{ for some } n \in \mathbb{Z}, \end{cases}$$

whose graph looks as follows:

For every $n \in \mathbb{N}$ consider the function

$$\varphi_n(t) = 2^{-n} \varphi(2^n t),$$

which is a homothetic copy of the function $\varphi(t)$.

Consider the nondecreasing sequence

$$n_k = \lfloor \log_2 \log_2(k+1) \rfloor, \quad k \in \mathbb{N},$$

where |x| is the integer part of x. Our example is the continuum

$$M = [0,1] \times \{0\} \cup \bigcup_{k=1}^{\infty} \left\{ \left(t, \frac{1}{k}\varphi_{n_k}(t)\right) : t \in [0,1] \right\}$$

in the plane \mathbb{R}^2 , shown in Figure 1.

The following theorem yields Theorem 1 as a corollary.

933

FIGURE 1. The space M

Theorem 3. The space M has the following properties:

- (1) M is a rim-finite plane Peano continuum;
- (2) $\dim(M) = 1$ and S- $\dim(X) = \infty$;
- (3) M is not homeomorphic to an IFS attractor.

Proof. It is easy to see that X is a rim-finite plane Peano continuum. The rim-finiteness of M implies that $\dim(M) = 1$.

To show that S-dim $(M) = \infty$, fix any continuous metric d on M. Let R = d((0,0), (1,0)) be the d-distance between the end-points of the "bone" $I = [0,1] \times \{0\} \subset M$ of the "shark teeth" M.

Given $\varepsilon > 0$, consider any cover \mathcal{C} of M by connected subsets of d-diameter $< \varepsilon$ with $|\mathcal{C}| = S_{\varepsilon}(M)$. For every $k \ge 1$ let $M_k = \{(t, \frac{1}{k}\varphi_{n_k}(t)) : t \in [0, 1]\}$ be the kth generation of "teeth" and $\mathcal{C}_k = \{C \in \mathcal{C} : C \cap M_k \neq \emptyset \text{ and } C \cap I = \emptyset\}$. It is easy to see that each $C \in \mathcal{C}_k$ lies in $M_k \setminus I$ and hence the families $\mathcal{C}_k, k \ge 1$, are disjoint.

We claim that $|\mathcal{C}_k| \geq \frac{R}{\varepsilon} - 2(2^{n_k} + 1)$ for every $k \geq 1$. Indeed, note that each element $C \in \mathcal{C}$ meeting the set $M_k \cap I$ at some point $x \in M_k \cap I$ lies in the ε -ball $B_{\varepsilon}(x) = \{y \in M : d(x, y) < \varepsilon\}$. Then the family $\mathcal{C}_k \cup \{B_{\varepsilon}(x) : x \in M_k \cap I\}$ covers the kth generation of "teeth" M_k and

$$R \leq \operatorname{diam} M_k \leq \sum_{C \in \mathcal{C}_k} \operatorname{diam} C + \sum_{x \in M_k \cap I} \operatorname{diam} B_{\varepsilon}(x) \leq \varepsilon |\mathcal{C}_k| + 2\varepsilon (2^{n_k} + 1).$$

Consequently, $|\mathcal{C}_k| \geq \frac{R}{\varepsilon} - 2(2^{n_k} + 1).$

Taking into account that for any $\alpha > 0$ there exists $\sup_{k \ge 1} \frac{2^{n_k}}{k^{\alpha}} = A < \infty$, we note that $2^{n_k} \le Ak^{\alpha}$ for each $k \ge 1$. This implies the lower bound $|\mathcal{C}_k| \ge \frac{R}{\varepsilon} - 2(Ak^{\alpha} + 1)$. Let $k_0 = (\frac{R-4\varepsilon}{4A\varepsilon})^{\frac{1}{\alpha}}$ and note that for any $k \le k_0$, we get $|\mathcal{C}_k| \ge \frac{R}{\varepsilon} - 2(Ak_0^{\alpha} + 1) = \frac{R}{2\varepsilon}$. Then

$$S_{\varepsilon}(M) = |\mathcal{C}| \ge \sum_{k \le k_0} |\mathcal{C}_k| \ge \frac{R}{2\varepsilon} \lfloor k_0 \rfloor \ge \frac{R}{2\varepsilon} (k_0 - 1) = \frac{R}{2\varepsilon} \left(\left(\frac{R}{4A\varepsilon} - \frac{1}{A}\right)^{\frac{1}{\alpha}} - 1 \right)$$

and there exist D > 0 and $\varepsilon_0 > 0$ such that for all $\varepsilon < \varepsilon_0$ we get $S_{\varepsilon}(M) \ge D\varepsilon^{-(1+\frac{1}{\alpha})}$. This implies that S-Dim $(M, d) \ge 1 + \frac{1}{\alpha}$ for any $\alpha > 0$. Consequently, S-Dim $(M, d) = \infty$ for any continuous metric d on M and S-dim $(M) = \infty$. \Box

3. Some open questions

We shall say that a compact topological space X is a topological IFS-attractor if $X = \bigcup_{i=1}^{n} f_i(X)$ for some continuous maps $f_1, \ldots, f_n : X \to X$ such that for any open cover \mathcal{U} of X there is $m \in \mathbb{N}$ such that for any functions $g_1, \ldots, g_m \in$ $\{f_1, \ldots, f_n\}$ the set $g_1 \circ \cdots \circ g_m(X)$ lies in some set $U \in \mathcal{U}$. It is easy to see that each IFS-attractor is a topological IFS-attractor and each connected topological IFS-attractor is metrizable and locally connected.

Problem 2. Is each (finite-dimensional) Peano continuum a topological IFS-attractor? In particular, is the space M constructed in Theorem 3 a topological IFS-attractor?

Acknowledgement

The authors would like to express their sincere thanks to Wiesław Kubiś for posing problems and useful comments.

References

- S. Akiyama, J. Thuswaldner, A survey on topological properties of tiles related to number systems, Geom. Dedicata 109 (2004), 89–105. MR2113188 (2005h:37035)
- T. Banakh, M. Tuncali, Controlled Hahn-Mazurkiewicz Theorem and some new dimension functions of Peano continua, Topology Appl. 154 (2007), no. 7, 1286–1297. MR2310462 (2008e:28015)
- 3. M. Barnsley, Fractals everywhere, Academic Press, Boston, 1988. MR977274 (90e:58080)
- P.F. Duvall, L.S. Husch, Attractors of iterated function systems, Proc. Amer. Math. Soc. 116 (1992), no. 1, 279–284. MR1132850 (93d:54057)
- 5. G. Edgar, Measure, topology, and fractal geometry, Springer, New York, 2008. MR2356043 (2009e:28001)
- M. Hata, On the structure of self-similar sets, Japan J. Appl. Math. 2 (1985), no. 2, 381–414. MR839336 (87g:58080)
- A. Kameyama, Self-similar sets from the topological point of view, Japan J. Indust. Appl. Math. 10 (1993), no. 1, 85–95. MR1208183 (94a:54099)
- M. Kwieciński, A locally connected continuum which is not an IFS attractor, Bull. Polish Acad. Sci. Math. 47 (1999), no. 2, 127–132. MR1686674 (2000j:28008)
- J. Luo, H. Rao, B. Tan, *Topological structure of self-similar sets*, Fractals **10** (2002), no. 2, 223–227. MR1910665 (2003d:28014)
- S. Nadler, Continuum theory. An introduction, Marcel Dekker, Inc., New York, 1992. MR1192552 (93m:54002)
- S.-M. Ngai, T.-M. Tang, Topology of connected self-similar tiles in the plane with disconnected interiors, Topology Appl. 150 (2005), no. 1-3, 139–155. MR2133675 (2006b:52019)
- L. Pontrjagin, L. Schnirelmann, Sur une propriété métrique de la dimension, Ann. of Math.
 (2) 33 (1) (1932) 156–162. MR1503042
- 13. M. Sanders, An n-cell in \mathbb{R}^{n+1} that is not the attractor of any IFS on \mathbb{R}^{n+1} , Missouri J. Math. Sci. **21** (2009), no. 1, 13–20. MR2503170 (2010e:28008)
- H. Sumi, Interaction cohomology of forward or backward self-similar systems, Adv. Math. 222 (2009), no. 3, 729–781. MR2553369 (2010j:37019)

Instytut Matematyki, Jan Kochanowski University, Kielce, Poland – and – Ivan Franko National University of Lviv, Ukraine

 $E\text{-}mail\ address: \texttt{t.o.banakh@gmail.com}$

Faculty of Mathematics and Computer Science, Jagiellonian University, ul. Lojasiewicza 6, 30-348 Kraków, Poland, – and – Jan Kochanowski University, ul. Świętokrzyska 15, 25-406 Kielce, Poland

E-mail address: magdalena.nowak805@gmail.com